Why do sine and cosine NOT have asymptotes, but the other four trig graphs do? Use unit circle ratios to explain.
Sine and cosine graphs don't have asymptotes because asymptotes occur when the denominator of the ratios is 0 (undefined). The other trig graphs can be divided by 0 and it can be undefined while sine and cosine can't be divided by 0. They can only be divided by 1 because 1 is their restriction on the Unit Circle and on the Unit Circle itself it goes from 1 to -1 on both axis. They both can't be divided by 0 because it's not undefined but no solution. The other four graphs especially tangent and cotangent have no restrictions and if their ratios equal undefined then it's their asymptote.
No comments:
Post a Comment